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Nonequilibrium properties in the transverse XX chain

Yoshiko Ogata*
Department of Physics, Graduate School of Science, University of Tokyo, Hongo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japa

~Received 27 March 2002; published 30 July 2002!

We investigate the nonequilibrium properties of the transverseXX chain. The steady state can be interpreted
as the equilibrium state or the ground state of the effective Hamiltonian, which depends on the initial state. We
also study the physical properties of the state at various temperatures, in particular, the effects of quantum
phase transition.
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I. INTRODUCTION

During the past few years the thermal conductivity
low-dimensional spin systems has attracted considerable
terest@1,2#. There are one-dimensional integrable spin s
tems whose Hamiltonians have an infinite number of
conserved quantities. Those systems exhibit anomalous
conduction @3,4#, but in real materials, impurities an
phonons suppress the anomalous conduction. However
cent experiments showed that such a ballistic transpor
realized on a small scale@5#. Sologubenkoet al. measured
the thermal conductivity in Sr2CuO3 which can be described
by the isotropic Heisenberg chains in equilibrium case, a
found that the energy is transmitted by spin excitatio
~spinon! @6#. This phenomenon is found in many materia
including KCUF3 @7#, CuGeO3 @8–12#, YB4As3 @13#, and
SrCu2(BO3)2 @14#. In CuGeO3, the coherent length is est
mated at about 100 times the lattice constant above the s
Peierls transition temperature, i.e., in the regime of the
tropic one-dimensional Heisenberg model. Thus it is v
interesting to investigate the nonequilibrium properties
spin systems where the ballistic heat transport is obser
Such nonequilibrium feature may serve to clarify the therm
behaviors of real materials in experiments. In this paper,
consider the transverseXX chain and study the nonequilib
rium properties under the transverse field.

The transverseXX chain is regarded as a special case
the XXZ spin chain. Although it is a simple model, it show
the quantum phase transition as a function of the transv
field. This system has the conserved quantities such as
total magnetization of thez component of the spin, so tha
we expect the ballistic transport. When the exchange in
action is very large in comparison with the energy scale
phonons at low temperatures, this feature will survive o
small scale although the impurities and phonons make
macroscopic heat transport to be normal in real materi
Hence this model may clarify the important effect of t
quantum phase transition on the nonequilibrium proper
for the materials with large exchange interaction.

This problem was first studied by Antalet al., using the
Lagrange multiplier@15#. They devised the effective Hamil
tonian composed of the bulk Hamiltonian~transverseXY
chain! and the energy current operator that is connected
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the Lagrange unknown coefficient. And they investigated
ground state of it. As a result, it was found that the corre
tions at large distance show oscillations whose amplitu
decay according to the power law. We treat the same prob
without resorting to such Lagrange multiplier. Alternative
we stand on the point of view that the quantum system is
the nonequilibrium steady state in the sense of Ruelle@16#
and Jaks˘ić and Pillet@17#. The nonequilibrium steady state
the state asymptotically realized from the initial state that
system is connected to reservoirs of different temperatu
Since the energy is transmitted between the reservoirs at
ferent temperatures, we consider the thermal reservoirs
two different temperatures composed of spin chains. We
interested in the asymptotic behavior. Therefore, we hav
treat an infinite system from the beginning. For the purpo
we take theC* -algebraic approach@18,19#.

In order to discuss state with the current, Antalet al.
added a current term to the original bulk Hamiltonian,
make the effective Hamiltonian@15#. To investigate the cor-
responding structure, we look for the effective Hamiltoni
of the asymptotic state in Sec. III. This is also interesting
the viewpoint of the ensemble argument of the steady s
@20#. If the initial temperatures of both the~i.e., right and
left! reservoirs are finite, the asymptotic state can be in
preted as the equilibrium state of some effective Hamilton
at finite temperatureHeff

f . It depends on the initial tempera
tures. On the other hand, if the initial temperature of the
~or right! side is zero, the state can be interpreted as
ground state of some effective Hamiltonian at zero tempe
ture Heff

0 . In fact, Heff
0 is formally given as the zero

temperature limit ofHeff
f . It is independent of the initial tem

perature of the right~left! part, and all the asymptotic state
with different initial temperatures of the right~left! part are
the ground state ofHeff

0 . They exhibit very different features
The effective Hamiltonian differs from the original one up
the conserved quantities. It is also remarkable that it sho
the nonlocal property. That agrees with the general con
ture that the free energy functional of the nonequilibriu
steady state is nonlocal. The effective Hamiltonian is diff
ent from that of Ref.@15#, and consequently, we observe th
different physical features.

In Sec. IV, we investigate the transverse field depende
of the energy current. We find that the quantum liquid st
enhances the energy current at low temperatures and
transverse field suppresses the enhancement. This phe
©2002 The American Physical Society35-1
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enon was observed in SrCu2(BO3)2 @14#. On the contrary, in
the state at high temperatures, the current becomes smal
the transverse field increases. The energy current work
localize spin correlations, because it has the thermal orig

II. THE ASYMPTOTIC STATE

The Hamiltonian we shall consider has the form

H5J (
n52`

`

~sn
xsn11

x 1sn
ysn11

y !1G (
n52`

`

sn
z , ~1!

wheresn
a (a5x,y,z) is thea component of the Pauli matrix

at the siten. J.0 is the coupling strength andG describes
the Zeeman term along thez direction. We denoteG/2J asg.
As the Hamiltonian is invariant under the transformati
sn

a→2sn
a , G→2G, we may consider only theg.0 case.

In order to realize the nonequilibrium steady state,
following situations are assumed.

~i! We first divide the whole system into two parts com
posed of spins, i.e., the left part of negative sitesn,0 and
the right part of positive sitesn>1.

~ii ! These parts are initially in equilibrium at the temper
turesb2 andb1 , respectively.

~iii ! Then the system evolves freely in time, and asym
totically reaches the steady states.

The energy flow operator at thenth site, J E
n , is easily

calculated from the continuity equation of energy;

J E
n522J2Fsn

z~sn11
x sn21

y 2sn21
x sn11

y !

1
G

J
~sn11

y sn
x2sn11

x sn
y!G . ~2!

The Hamiltonian~1! and the energy flow~2! are written by
the fermion operators using the Jordan-Wigner transfor
tion,

H522J (
n52`

`

@an11
† an1an

†an11#1G (
n52`

`

~2an
†an21!,

J E
n54iJ2F2an21

† an111an11
† an21

2
G

J
~an11

† an2an
†an11!G , ~3!

wherean andan
† are the fermionic annihilation and creatio

operators of thenth site.
As we are interested in the asymptotic behavior, we tr

an infinite system from the beginning. For the purpose,
employ theC* -algebraic approach@18,19#. In a finite sys-
tem,
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the expectation value of the observableA is determined by
the density matrixr, as TrrA. In C* -algebraic theory, this is
generalized to the positive linear mapc that is calledstate.
The expectation value ofA is given by c(A). In a finite
system, the time evolution in the Heisenberg picture is r
resented byA→Ut* AUt , whereUt5e2 iHt is a unitary op-
erator. Instead of this, we have one parameter group of
tomorphisms a t , which means the time evolutionA
→a t(A). For the system initially in the statec0, the expec-
tation value of the observableA at the timet is expressed as
c0„a t(A)…. We consider the asymptotic state in the long-tim
limit, c`(A)5 lim

t→`
c0„a t(A)….

The initial state has the decoupling form as

c0~A1 ^ A2!5c
1

b1~A1! ^ c
2

b2~A2!, ~4!

whereA1 and A2 are arbitrary operators of the right pa
(n>1) and the left part (n<0) of the chain, respectively
c

1

b1 and c
2

b2 are the states in equilibrium at the inver
temperaturesb1 andb2 . Because of the quadratic form o
the equilibrium statesc

1

b1 andc
2

b2 , the expectation values
are enumerated using the Wick product with two-point fun
tion. The dynamics corresponding to the Hamiltonian~3! is

a t„a
†~ f !…5a†~eith f !, ~5!

where we use a notation

a†~ f ![ (
l 52`

`

f lal
† , (

l 52`

`

u f ~ l !u2,`,

andh is the one-particle Hamiltonian with

~h f !~n!522J„f ~n21!1 f ~n11!…12G f ~n!.

Following the argument of Ho and Araki@21# and Araki@22#,
we can calculate the asymptotic statec` : First we derive the
exact time evolution at timet ~5!. Second, take thet→`
limit of the expectation value of observables, with the aid
some asymptotic formulas@23,24#. Thus, we have the two
point correlation function

c`,b2 ,b1
~al

†am!5G~b2 ,b1 ,l 2m!

5G2~b2 ,l 2m!1G1~b1 ,l 2m!,

G2~b2 ,n!5
1

2pE0

p

dk
eink

11e24Jb2„cos(k)2g…
, ~6!

G1~b1 ,n!5
1

2pE2p

0

dk
eink

11e24Jb1„cos(k)2g…
.

Because the dynamics preserves the quasifree property o
state,c` is also given by the Wick product with the two
point function. Note that only the particles with positive m
mentum (0<k<p) contribute to the functionG2(b2 ,n).
This implies a situation that quasiparticles with negative m
mentum in the left part of the chain go to left infinity and d
5-2
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not appear in the correlation function. This feature is also
case in the right part of the chain, as seen inG1(b1 ,n).

III. EFFECTIVE HAMILTONIAN

In the view point of the ensemble argument, we look
the effective Hamiltonian: the asymptotic state may be in
preted as an equilibrium state or the ground state of the
fective Hamiltonian in the Fermion picture@20#. This also
clarifies the difference of our situation from that of Ant
et al. @15#.

It is not always possible to find the effective Hamiltonia
for every state, but in our system, we can. Although for
infinite system some automorphism takes the place of
effective Hamiltonian, we can make the argument forma
in the Hamiltonian form. The precise meaning of it will b
stated in Ref.@25#.

First, let us consider the finite temperature case,
where bothb2 andb1 are finite. The two-point function~6!
can be interpreted as the Fermi distribution with respec
the Hamiltonian

Heff5E
2p

p

e~k!ak
†ak ,

e~k!5
28J

b21b1
H b2„cos~k!2g… kP@0,p#,

b1„cos~k!2g… kP~2p,0!,

at the inverse temperatureb[(b21b2)/2. Hereak
† is the

fermion creation operator for a particle with the momentu
k. Furthermore, this can be proved to be the uniquely de
mined effective Hamiltonian. Let us represent the interact
between the sites, in the coordinate representation. In
coordinate representation,Heff is written in the form

Heff5H1 (
N50

`

mN
1 QN

1 1mN
2 QN

2 , ~7!

where,QN
1 ,QN

2 are conserved quantities,

QN
1 5

1

2 (
l 52`

`

~aN1 l* al1al* aN1 l !,

QN
2 5

1

2i (
l 52`

`

~aN1 l* al2al* aN1 l !.

Hence, we can see that the effective Hamiltonian is differ
from the original one up to conserved quantity, and the d
ference is determined bymN(b2 ,b1),

m2l
2 ~b2 ,b1!52

8J

p

b22b1

b21b1

4l

4l 221
, l>1,

m2l 11
2 ~b2 ,b1!5

16J

p
g

b22b1

b21b1

1

2l 11
, l>0,

mN
1 ~b2 ,b1!50. ~8!

Next, we consider the case thatb25`, i.e., the left part
is initially at the zero temperature. Since the transverseXX
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model exhibits the phase transition at the zero temperat
this is a physically interesting situation. In theb2→` limit,
mN(b2 ,b1) in Eq. ~8! converge to

m2l
2 ~`,b1!52

8J

p

4l

4l 221
, l>1,

m2l 11
2 ~`,b1!5

16J

p
g

1

2l 11
, l>0,

mN
1 ~`,b1!50. ~9!

As is expected, the statec`,(`,b1) is the ground state of the

effective HamiltonianHeff
0 of the form~7!, with Eq. ~9! @25#.

Note thatmN(`,b1) are b1 independent. In fact, all the
asymptotic states with differentb1 are the ground states o
the same effective Hamiltonian,@19,25#. In the following
section, these degenerate states will be shown to have
different structures, up tob1 .

Note thatQN describes to theN-sites interaction. So we
can interpret the power-law decay of themN as a signal of
the nonlocal property ofHeff . It is expected in general tha
if the free-energy functional exits for the nonequilibriu
steady state, it may have the nonlocal property. In fact, D
rida et al., have derived the nonlocal free-energy function
for the nonequilibrium steady state of an exactly solva
model @20#. Our result here agrees with the expectation.

In this way we have obtained the effective Hamiltoni
Heff . It is remarkable that our effective Hamiltonian is e
tirely different from that of Antalet al. @15#: They added
magnetic current or energy current. The magnetic curr
case corresponds to the effective Hamiltonian

H2lQ2
1 ,

and the energy current case corresponds to,

H2l~Q2
22gQ1

2!.

In the next section, we shall discuss in detail the physi
properties of the states.

IV. PHYSICAL PROPERTIES OF THE STEADY STATE

Once the two-point functions are obtained, various qu
tities are calculated. It is known that the quantum phase tr
sition occurs at the zero temperature atg51. Wheng,1,
this system remains in the disordered phase due to the q
tum effect. We investigate how this quantum phase transi
affects the energy flow and the correlation of spins in a n
equilibrium state. In order to analyze the effect, we consi
the b2→` limit, i.e., we take the zero-temperature limit i
the left part, and change 1/b1 , the temperature in the righ
part. As shown in Sec. III, the states with differentb1 can be
regarded as the degenerate ground states of the effe
Hamiltonian corresponding tob25`. We shall calculate the
energy current and the two-point correlation function of t
spins in thez andx directions.

The energy current is given by
5-3
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JE[c`~J E
n !52

4J2

p F E
2p

0

dk
~cosk2g!sink

11e24Jb1„cos(k)2g…

1E
0

p

dk
~cosk2g!sink

11e24Jb2„cos(k)2g…G . ~10!

We see that the quasiparticle with the energy 2J(cosk2g)
runs through the chain at the velocity sink and that the num-
ber of particles is in proportion to1/(11e2b1„cos(k)2g…) for
negativek, and to 1/(11e2b2„cos(k)2g…) for positive k. The
positive momenta of particles initially on the right go aw
to 1` and only the negative momenta are left. The sa
applies to particles initially on the left.

Now, we concentrate on theb2→` limit. In this case, the
second integral of Eq.~10! is restricted to 0<k<arccosg.
Thus the energy flow is reduced to

FIG. 1. The transverse field dependence of the energy cur
for various temperatures: high-temperature regime. The value o
inverse temperatureb1 is attached to the line samples.

FIG. 2. The transverse field dependence of the energy cur
for various temperatures: low-temperature regime. The value of
inverse temperatureb1 is attached to the line samples.
01613
e

JE52
2J2

p E
2p

0

dk
~sin 2k22g sink!

11e24Jb1(cos(k)2g)

24J2H ~g21!2

2p
0<g,1,

0 1<g.

There appears a characteristic difference between high-
low-temperatures 1/b1 ~Figs. 1, 2!. At high temperature, the
transverse field enhances the energy current. At low temp
ture, it suppresses the current. This phenomenon has
observed in the experiment on SrCu2(BO3)2 @14#. At high
temperatures, the energy flux behaves as

JE;2
4J2

p H g211

2
2b1S 1

6
1

1

2
g2D 0<g,1,

g2b1S 1

6
1

1

2
g2D 1<g.

In the high-temperature limitb1→0, this converges to the
maximum eigenvalue of the energy flux operator which
called ‘‘maximal current’’ in Ref.@15#. On the other hand, a
low temperatures, the oppositeg dependence of the energ
flux is observed. That is,JE decreases asg increases. For
1<g, it decreases exponentially,

JE;2
4J2

p Fe4Jb1(12g)S 1

4Jb1
~g21!1

1

~4Jb1!2D
2e24Jb1(11g)S 1

4Jb1
~g11!1

1

~4Jb1!2D G .

Intuitively, in the case of largeg, i.e.,g@1, spins at the right
part flip with the possibilitye2bg. On the other hand, the
energy transported per flip is roughlyg. Hence, the energy
transported is proportional toge2bg. At high temperature, as

nt
he

nt
e

FIG. 3. The correlation function of thez component of spins for
various temperatures and transverse fields. The numbers beside
line samples indicate the value of the transverse fieldg and the
inverse temperatureb1 in order.
5-4
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g increases, the energy transported increases asg, while at
low temperature it decreases exponentially as calcula
above.

We next consider the correlation of thez component of
spins,

r r
z5c`~sn

zsn1r
z !, r .0.

As the statec` is translation invariant,r r
Z is n independent

and is a function ofb2 ,b1 , g, and r. The correlation is
expressed in terms of the two-point functionG,

r r
z5@2G~b2 ,b1,0!21#224uG~b2 ,b1 ,r !u2. ~11!

To investigate the effects of the phase transition,
present the behavior of theb2→` limit of r r

z ,
lim

b2→`
r r

z(b2 ,b1). If the right part temperature is als

zero, i.e.,b15`, the current is absent and the amplitude
oscillation in r r

z is large. In this case,g50 corresponds to
the antiferromagnetic phase, whileg>1 to the ferromagnetic
phase. Wheng increases from 0 to 1, the phase chang
from the antiferromagnetic one to the ferromagnetic one.
the temperature increases, the correlation tends to lose
antiferromagnetic structure. At a finiteb1 , there is a finite
JE . The current is of thermal origin and disturbs the glob
correlation between local spins. Hence, the chain show
more localized structure than the one without current, a
loses the antiferromagnetic structure~Fig. 3!.

Finally, we consider the correlation function of thex com-
ponent of spins,

r r
x5c`~sn

xsn1r
x !.

This function is calculated from the determinant of the m
trix of the two-point function. In order to see clearly th
decay of the correlation at low and high temperatures,
draw the graph in log-log and semilog plot~Figs. 4, 5!. In the
figure, r r

x is given for various temperatures, with transver

FIG. 4. The correlation function of thex component of spins~in
log-log scale! for various temperatures with the transverse fie
fixed to g50.1. The number besides the line samples indicates
value of the inverse temperatureb1 . f (r ) is the line with slope of
2

1
2 : ln rr

x5f(r)521.842 1
2 ln r.
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field fixed tog50.1. From Fig. 4, it can be seen that at lo
temperature~largeb1), the correlationr r

x decreases asr 21/2.
From Figs. 4 and 5, it can be seen that at high tempera
~small b1), r r

x decreases exponentially for larger, while it
decreases asr 21/2 for small r.

V. DISCUSSION

We have studied the transverseXX chain and have shown
that the nonequilibrium steady state can be interpreted as
equilibrium or the ground state of some effective Ham
tonian in the Fermion picture. The ground state is degene
and the degenerate states have physically very different p
erties. The effective Hamiltonian consists of the original o
and the conserved quantities. It has been shown that the
fective Hamiltonian is nonlocal. The nonlocal form may b
due to the fact that the model has an infinitely many co
served quantities. In fact, the sequence of the conse
quantity QN that representsN-site interactions implies the
existence of the infinitely many conserved quantities. T
effective Hamiltonian of strongly interacting systems m
have some very different structures.

We have discussed the asymptotic state for local obs
ables; that is, we have fixed some localn that is independen
of t, and considered the limitt→`. If we instead consider
the expectation value of the observable atn5vt for each real
v, we can observe the diffusion of the temperature distri
tion. This interesting consideration was given by Antalet al.
@26# for zero-temperature system. Modifying th
C* -algebraic argument used in this paper, we can obtain
result that agrees with that of Antalet al. @26#. Further argu-
ment is possible, which will be stated in Ref.@27#.
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