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Nonequilibrium properties in the transverse XX chain
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We investigate the nonequilibrium properties of the transvEdsehain. The steady state can be interpreted
as the equilibrium state or the ground state of the effective Hamiltonian, which depends on the initial state. We
also study the physical properties of the state at various temperatures, in particular, the effects of quantum
phase transition.
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[. INTRODUCTION the Lagrange unknown coefficient. And they investigated the

ground state of it. As a result, it was found that the correla-

During the past few years the thermal conductivity oftions at large distance show oscillations whose amplitudes

low-dimensional spin systems has attracted considerable itecay according to the power law. We treat the same problem
terest[1,2]. There are one-dimensional integrable spin syswithout resorting to such Lagrange multiplier. Alternatively,

tems whose Hamiltonians have an infinite number of theye stand on the point of view that the quantum system is in

conserved quantities. Those systems exhibit anomalous hegje nonequilibrium steady state in the sense of Rudl&

conduction [3,4], but in real materials, impurities and ang Jakig and Pillet[17]. The nonequilibrium steady state is

phonons suppress the anomalous conduction. However, r'gse state asymptotically realized from the initial state that the

cent experiments showed that such a ballistic transport i§y stem s connected to reservoirs of different temperatures.

rre]allﬁed onl a s?all_s.ca[é]. gologutr)]_er;]koet aé. n;easursdd Since the energy is transmitted between the reservoirs at dif-
the thermal conductivity in $EUQ; which can be describe ferent temperatures, we consider the thermal reservoirs with

by the isotropic Heisenberg chains in equilibrium case, anqWO different temperatures composed of spin chains. We are
found that the energy is transmitted by spin excitations '

(spinon) [6]. This phenomenon is found in man materialsmterested in the asymptotic behavior. Therefore, we have to

ingluding K.CUI§ [rJ7] CuGeQ [8-17, YB,As [13] and treat an infinite system from the beginning. For the purpose,
I - ) 4 3 1 .

SrCw(B0O3), [14]. In CuGeQ, the coherent length is esti- V€ take theC™-algebraic approacfi8,1d.

mated at about 100 times the lattice constant above the spin- In order to discuss state W't_h_the current, An&i!al.
Peierls transition temperature, i.e., in the regime of the iso2dded a current term to the original bulk Hamiltonian, to

tropic one-dimensional Heisenberg model. Thus it is veryMake the effective Hamiltoniafi5]. To investigate the cor-
interesting to investigate the nonequilibrium properties in"€sponding structure, we look for the effective Hamiltonian
spin systems where the ballistic heat transport is observedf the asymptotic state in Sec. lll. This is also interesting in
Such nonequilibrium feature may serve to clarify the thermafh€ viewpoint of the ensemble argument of the steady state
behaviors of real materials in experiments. In this paper, wé20]- If the initial temperatures of both the.e., right and
consider the transverséX chain and study the nonequilib- |€ft) reservoirs are finite, the asymptotic state can be inter-
rium properties under the transverse field. pre_te_d as the equmbrlfum state of some effe(_:u_v_e Hamiltonian
The transvers& X chain is regarded as a special case ofét finite temperaturéy. It depends on the initial tempera-
the XXZ spin chain. Although it is a simple model, it shows tures. On the other hand, if the initial temperature of the left
the quantum phase transition as a function of the transverd®r right) side is zero, the state can be interpreted as the
field. This system has the conserved quantities such as tiound state of some effective Hamiltonian at zero tempera-
total magnetization of the component of the spin, so that ture Hey. In fact, Hey is formally given as the zero-
we expect the ballistic transport. When the exchange intetemperature limit of{;. It is independent of the initial tem-
action is very large in comparison with the energy scale operature of the rightleft) part, and all the asymptotic states
phonons at low temperatures, this feature will survive on awith different initial temperatures of the rigfieft) part are
small scale although the impurities and phonons make ththe ground state df.;. They exhibit very different features.
macroscopic heat transport to be normal in real materialsThe effective Hamiltonian differs from the original one up to
Hence this model may clarify the important effect of thethe conserved quantities. It is also remarkable that it shows
guantum phase transition on the nonequilibrium propertieshe nonlocal property. That agrees with the general conjec-
for the materials with large exchange interaction. ture that the free energy functional of the nonequilibrium
This problem was first studied by Antet al, using the steady state is nonlocal. The effective Hamiltonian is differ-
Lagrange multiplief15]. They devised the effective Hamil- ent from that of Ref[15], and consequently, we observe the
tonian composed of the bulk HamiltonigtransverseXY  different physical features.
chain and the energy current operator that is connected by In Sec. IV, we investigate the transverse field dependence
of the energy current. We find that the quantum liquid state
enhances the energy current at low temperatures and the
*Electronic address: ogata@monet.phys.s.u-tokyo.ac.jp transverse field suppresses the enhancement. This phenom-
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enon was observed in SrgBO;), [14]. On the contrary, in  the expectation value of the observaBlas determined by
the state at high temperatures, the current becomes smaller e density matriyp, as TrpA. In C* -algebraic theory, this is
the transverse field increases. The energy current works t@eneralized to the positive linear mapthat is calledstate
localize spin correlations, because it has the thermal originThe expectation value oA is given by (A). In a finite
system, the time evolution in the Heisenberg picture is rep-

II. THE ASYMPTOTIC STATE resented b)AHU?AUt, WhereUtze’”'“ is a Unitary op-
erator. Instead of this, we have one parameter group of au-
The Hamiltonian we shall consider has the form tomorphisms «;, which means the time evolutiolA

— a;(A). For the system initially in the statg,, the expec-
tation value of the observable at the timet is expressed as
Yo(ai(A)). We consider the asymptotic state in the long-time
limit, ¢o(A)=1lim ___¢o(a(A)).

The initial state has the decoupling form as

[} [’

H:anz—oo (0';0')3+1+0'%0'%+1)+Fn:2_m at, (1)

whereo;, (a¢=X,y,z) is thea component of the Pauli matrix

at the siten. J>0 is the coupling strength and describes

the Zeeman term along tizadirection. We denoté’/2] asy. Po(ALOA) =y (AL)® yP(AL), (4)

As the Hamiltonian is invariant under the transformation

ong——of, '=—TI, we may consider only the=>0 case. whereA, andA_ are arbitrary operators of the right part
In order to realize the nonequilibrium steady state, thg(ln=1) and the left parti{<0) of the chain, respectively.

following situations are assumed. w’i* and ¢~ are the states in equilibrium at the inverse
(i) We first divide the whole system into two parts com- temperature8, and3_ . Because of the quadratic form of

posed of spins, i.e., the left part of negative sitesO and b equilibrium stateg” " and ", the expectation values

the right part of positive sites=1. are enumerated using the Wick product with two-point func-

(ii) These parts are |n|t_|aIIy in equilibrium at the tempera-tion_ The dynamics corresponding to the Hamiltonianis
turesB_ and 3. , respectively.

_(iii) Then the system evolves freely in time, and asymp- a(af(f))=al(e'"f), (5)
totically reaches the steady states.

The energy flow operator at theth site, 73, is easily =~ where we use a notation
calculated from the continuity equation of energy;

[

al(h= X fial, X [f(h]*<,

Jg=—27

z X Yy _ X Yy
On(On4 107 1= 0n_10741)

andh is the one-particle Hamiltonian with

r
+ 3 (00100 Ths 100 |- 2 (hf)(n)=—23(F(N— 1)+ f(n+ 1))+ 2T'F(n).
The Hamiltonian(1) and the energy flow?2) are written by ~ Following the argument of Ho and Arak1] and Araki[22],

the fermion operators using the Jordan-Wigner transformale can calculate the asymptotic stgte: First we derive the
tion, exact time evolution at time (5). Second, take thé— o«

limit of the expectation value of observables, with the aid of

> * some asymptotic formulg3,24]. Thus, we have the two-
H=-2J E [a$+1an+ aﬁanﬂ] +T 2 (2a§an— 1), point correlation function
n=—o n=—owx

Vo 5, (a[am)=G(B- B .1 —m)

n_ ;12 T T
Je=41J9 —a,_18y+1+ a5, 180-1

:G,(ﬁ, !I_m)+G+(B+ ,|_m),

eink

1+ e HB-(cosk)—v)’

. )

t t
- j(an+1an_ anan+1)

1 (=
G,w,,n):Efo dk ®

wherea, anda, are the fermionic annihilation and creation
operators of theth site. 1 o e

As we are interested in the asymptotic behavior, we treat G+(B+ ,n)=EJ7 ﬂd 1+ HB(osk—7"
an infinite system from the beginning. For the purpose, we

employ theC*-algebraic approachl8,19. In a finite sys-  Because the dynamics preserves the quasifree property of the

ink

tem, state, ¢, is also given by the Wick product with the two-
point function. Note that only the particles with positive mo-
) T Ty _ mentum (0<k<) contribute to the functiorG_(B_,n).
e o ol lo o o This implies a situation that quasiparticles with negative mo-
n=-2n=-1n=0 n=1 n=2 n=3 mentum in the left part of the chain go to left infinity and do
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not appear in the correlation function. This feature is also thenodel exhibits the phase transition at the zero temperature,
case in the right part of the chain, as seerGin(8. ,n). this is a physically interesting situation. In tje — <o limit,
un(B-,B4) in Eq.(8) converge to
Il. EFFECTIVE HAMILTONIAN

8J 4l
In the view point of the ensemble argument, we look for p5(0,B4) =~ a1’ =1,
the effective Hamiltonian: the asymptotic state may be inter- A1
preted as an equilibrium state or the ground state of the ef- 163 1
fective Hamiltonian in the Fermion pictuf@0]. This also wa (2, B)="—y=—F, 1=0,
clarifies the difference of our situation from that of Antal m "2+1
etal. [15]. pA(=,61)=0. ©

It is not always possible to find the effective Hamiltonian
for every state, but in our system, we can. Although for any
infinite system some automorphism takes the place of the ) o o i
effective Hamiltonian, we can make the argument formallyefféctive Hamiltoniar# of the form(7), with Eq. (9) [25].
in the Hamiltonian form. The precise meaning of it will be Note thatuy(=,8.) are B, independent. In fact, all the
stated in Ref[25]. asymptotic states with differem8, are the ground states of

First, let us consider the finite temperature case, i.ethe same effective Hamiltonia19,25. In the following
where both3_ and g, are finite. The two-point functiots) section, these degenerate states will be shown to have very

can be interpreted as the Fermi distribution with respect télifferent structures, up i@, . o _
the Hamiltonian Note thatQy describes to thé\-sites interaction. So we

can interpret the power-law decay of thg, as a signal of
Heop= f” e(k)ajay, f[he nonlocal property o1-_[eff. It is _expected in genera_ll_ th_at,
- if the free-energy functional exits for the nonequilibrium
steady state, it may have the nonlocal property. In fact, Der-
—8J B-(cosk)=y) ke[Om], rida e)t/al., have de)r/ived the nonlocal frge—gneéjy functional
B-+B+ | Bi(cogk)—y) ke(—m0), for the nonequilibrium steady state of an exactly solvable
model[20]. Our result here agrees with the expectation.
at the inverse temperatuge=(5_+_)/2. Herea/ is the In this way we have obtained the effective Hamiltonian
fermion creation operator for a particle with the momentum? . It is remarkable that our effective Hamiltonian is en-
k. Furthermore, this can be proved to be the uniquely detetirely different from that of Antalet al. [15]: They added
mined effective Hamiltonian. Let us represent the interactiormagnetic current or energy current. The magnetic current
between the sites, in the coordinate representation. In thease corresponds to the effective Hamiltonian
coordinate representatiofy is written in the form

S is expected, the stale (. 5.) is the ground state of the

(k)=

- H—\Q3,
Heﬂ:H+NZO Mth+“’2\‘Qﬁ’ @ and the energy current case corresponds to,
where,Q%,,Q3 are conserved quantities, H=N(Q3— QD).
1 . . N In the next section, we shall discuss in detail the physical
QN:E |:2_w (ansiat+aran), properties of the states.

[’

IV. PHYSICAL PROPERTIES OF THE STEADY STATE
QIZ\IZE I_E; (aN i@ —afany).

Once the two-point functions are obtained, various quan-

Hence, we can see that the effective Hamiltonian is diﬁeren{ities are calculated. It is known that the quantum phase tran-

from the original one up to conserved quantity, and the dif-Sition occurs at the zero temperaturejat 1. Wheny<1,
ference is determined byn(8_,5.), this system remains in the disordered phase due to the quan-

tum effect. We investigate how this quantum phase transition

) 8B _—p, A4 affects the energy flow and the correlation of spins in a non-
uo(B-,By)=— o W 2172—1 =1, equilibrium state. In order to analyze the effect, we consider
R the B_—oc limit, i.e., we take the zero-temperature limit in
5 B_—B; 1 the left part, and change A/ , the temperature in the right
Mo 11(B- B+)= VB T p, 241 =0, part. As shown in Sec. I, the states with differght can be
- regarded as the degenerate ground states of the effective
un(B_ ,B4+)=0. (8)  Hamiltonian corresponding {8_ = . We shall calculate the

energy current and the two-point correlation function of the
Next, we consider the case that ==, i.e., the left part spins in thez andx directions.
is initially at the zero temperature. Since the transvetXe The energy current is given by
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FIG. 3. The correlation function of thecomponent of spins for

FIG. 1. The transverse field dependence of the energy currentarious temperatures and transverse fields. The numbers besides the
for various temperatures: high-temperature regime. The value of thkne samples indicate the value of the transverse figldnd the

inverse temperaturg. is attached to the line samples.

. . 432 fo (cosk— y)sink
E=¢x(-.7|5)—_? w14 e~ 4B(cosk)—7)

+fdk
0

We see that the quasiparticle with the energl{csk—1y)
runs through the chain at the velocity &iand that the num-
ber of particles is in proportion tt/(1+e ™ #+€s0=) for
negativek, and to 1/(H e #-©sKW=7) for positive k. The

(cok— y)sink
14+ e 4B-(cosk)—7)

] . (10

inverse temperatur@, in order.

(sin 2k— 2y sink)
1+ e~ 498 (cosk) )

2J? (o
I
(y—1)2

2
0 1<y.

Jg=

_ 4 O0=vy<1,

There appears a characteristic difference between high- and
low-temperatures B, (Figs. 1, 2. At high temperature, the
transverse field enhances the energy current. At low tempera-
ture, it suppresses the current. This phenomenon has been
observed in the experiment on SgCBO3), [14]. At high

positive momenta of particles initially on the right go away temperatures, the energy flux behaves as
to +o and only the negative momenta are left. The same

applies to particles initially on the left.

Now, we concentrate on the_— oo limit. In this case, the
second integral of Eq(10) is restricted to 6<k=<arccosy.
Thus the energy flow is reduced to
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In the high-temperature limiB, — 0, this converges to the
maximum eigenvalue of the energy flux operator which is
called “maximal current” in Ref[15]. On the other hand, at
low temperatures, the oppositedependence of the energy
flux is observed. That is]Jg decreases ag increases. For
1<+, it decreases exponentially,

(y—1)

il IRV CERY)
438,

7
4+ —
(43B+)?

1
_ e 4B (1+y)
e <4J

1
1 — .
A <4J,8+>2H

Intuitively, in the case of large, i.e.,y>1, spins at the right

FIG. 2. The transverse field dependence of the energy currefdart flip with the possibilitye #”. On the other hand, the
for various temperatures: low-temperature regime. The value of thenergy transported per flip is roughty Hence, the energy

inverse temperaturg. is attached to the line samples.

transported is proportional tge~#?. At high temperature, as
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FIG. 4. The correlation function of thecomponent of spinén FIG. 5. The correlation function of thecomponent of spinén
log-log scale for various temperatures with the transverse field semilog scalgfor various temperatures with transverse field fixed
fixed to y=0.1. The number besides the line samples indicates théo y=0.1. The number besides the line samples indicates the value
value of the inverse temperatuge. . f(r) is the line with slope of  of the inverse temperatuig, .

— 3 Inp'=f(r)=—1.84—3Inr.

field fixed toy=0.1. From Fig. 4, it can be seen that at low
y increases, the energy transported increaseg, aghile at  temperaturélarge 3., ), the correlatiorp decreases as /2.
low temperature it decreases exponentially as calculatedrom Figs. 4 and 5, it can be seen that at high temperature

above. _ _ (small B.), pr decreases exponentially for largewhile it
We next consider the correlation of tlzecomponent of  jecreases as Y2 for smallr.
spins,
p*= (0202, ), >0, V. DISCUSSION

We have studied the transverdX chain and have shown
that the nonequilibrium steady state can be interpreted as the
equilibrium or the ground state of some effective Hamil-
tonian in the Fermion picture. The ground state is degenerate

2 and the degenerate states have physically very different prop-
pr=[2G(B- B+, 0) =11~ 4[G(B-.B+.NI% (1) erties. The effective Hamiltonian consists of the original one
: : - and the conserved quantities. It has been shown that the ef-
To investigate the effects of the phase transition, WSective Hamiltonian is nonlocal. The nonlocal form may b
: o 2 . y be
present ;[he behavior Of. theg_— limit of P due to the fact that the model has an infinitely many con-
lim, _pr(B-.B). If the right part temperature is alsO goreq quantities. In fact, the sequence of the conserved
zero, i.e.,, =0, the current is absent and the amplitude ofquantity Qy that representd-site interactions implies the
oscillation in p? is large. In this casey=0 corresponds to existence of the infinitely many conserved quantities. The
the antiferromagnetic phase, whije=1 to the ferromagnetic effective Hamiltonian of strongly interacting systems may
phase. Wheny increases from 0 to 1, the phase changediave some very different structures.
from the antiferromagnetic one to the ferromagnetic one. As We have discussed the asymptotic state for local observ-
the temperature increases, the correlation tends to lose ti@les; that is, we have fixed some looahat is independent
antiferromagnetic structure. At a finig. , there is a finite  of t, and considered the limit—cc. If we instead consider
Je. The current is of thermal origin and disturbs the globalthe expectation value of the observabl@atvt for each real
correlation between local spins. Hence, the chain shows @, we can observe the diffusion of the temperature distribu-
more localized structure than the one without current, andion. This interesting consideration was given by Areahl.

As the statey,, is translation invariant,orz is n independent
and is a function of3_,B,, v, andr. The correlation is
expressed in terms of the two-point functiGn

loses the antiferromagnetic structufég. 3). [26] for zero-temperature system. Modifying the
Finally, we consider the correlation function of theom-  C*-algebraic argument used in this paper, we can obtain the
ponent of spins, result that agrees with that of Antet al. [26]. Further argu-

ment is possible, which will be stated in RE27].
pr= (00 p)-
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